Home Nature Quantum-enhanced Markov chain Monte Carlo
Nature

Quantum-enhanced Markov chain Monte Carlo


  • Arute, F. et al. Quantum supremacy using a programmable superconducting processor. Nature 574, 505–510 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wu, Y. et al. Strong quantum computational advantage using a superconducting quantum processor. Phys. Rev. Lett. 127, 180501 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhong, H.-S. et al. Phase-programmable Gaussian boson sampling using stimulated squeezed light. Phys. Rev. Lett. 127, 180502 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dongarra, J. & Sullivan, F. Guest editors’ introduction to the top 10 algorithms. Comput. Sci. Eng. 2, 22–23 (2000).

    Article 

    Google Scholar
     

  • Ackley, D. H., Hinton, G. E. & Sejnowski, T. J. A learning algorithm for Boltzmann machines. Cogn. Sci. 9, 147–169 (1985).

    Article 

    Google Scholar
     

  • Huang, K. Statistical Mechanics (Wiley, 2008).

  • Kirkpatrick, S., Gelatt, C. D. & Vecchi, M. P. Optimization by simulated annealing. Science 220, 671–680 (1983).

    Article 
    MathSciNet 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Ising, E. Beitrag zur Theorie des Ferromagnetismus. Z. Phys. 31, 253–258 (1925).

    Article 
    CAS 
    MATH 

    Google Scholar
     

  • & Lucas, A. Ising formulations of many NP problems. Front. Phys. 2, 5 (2014).

    Article 

    Google Scholar
     

  • Barahona, F. On the computational complexity of Ising spin glass models. J. Phys. A 15, 3241–3253 (1982).

    Article 
    MathSciNet 

    Google Scholar
     

  • Levin, D. and Peres, Y. Markov Chains and Mixing Times (American Mathematical Society, 2017).

  • Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H. & Teller, E. Equation of state calculations by fast computing machines. J. Comp. Phys. 21, 1087–1092 (1953).

    CAS 
    MATH 

    Google Scholar
     

  • Hastings, W. K. Monte Carlo sampling methods using Markov chains and their applications. Biometrika 57, 97–109 (1970).

    Article 
    MathSciNet 
    MATH 

    Google Scholar
     

  • Andrieu, C., de Freitas, N., Doucet, A. & Jordan, M. I. An introduction to MCMC for machine learning. Mach. Learn. 50, 5–43 (2003).

    Article 
    MATH 

    Google Scholar
     

  • Swendsen, R. H. & Wang, J.-S. Nonuniversal critical dynamics in Monte Carlo simulations. Phys. Rev. Lett. 58, 86–88 (1987).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wolff, U. Collective Monte Carlo updating for spin systems. Phys. Rev. Lett. 62, 361–364 (1989).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Houdayer, J. A cluster Monte Carlo algorithm for 2-dimensional spin glasses. Eur. Phys. J. B 22, 479–484 (2001).

    Article 
    CAS 

    Google Scholar
     

  • Zhu, Z., Ochoa, A. J. & Katzgraber, H. G. Efficient cluster algorithm for spin glasses in any space dimension. Phys. Rev. Lett. 115, 077201 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Goodfellow, I., Bengio, Y. & Courville, A. Deep Learning (MIT Press, 2016).

  • Callison, A., Chancellor, N., Mintert, F. & Kendon, V. Finding spin glass ground states using quantum walks. New J. Phys. 21, 123022 (2019).

    Article 
    MathSciNet 

    Google Scholar
     

  • Lloyd, S. Universal quantum simulators. Science 273, 1073–1078 (1996).

    Article 
    MathSciNet 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Anis Sajid, M. et al. Qiskit: An open-source framework for quantum computing https://doi.org/10.5281/zenodo.2573505 (2021).

  • Ambegaokar, V. & Troyer, M. Estimating errors reliably in Monte Carlo simulations of the Ehrenfest model. Am. J. Phys. 78, 150–157 (2010).

    Article 

    Google Scholar
     

  • Szegedy, M. in 45th Annual IEEE Symposium on Foundations of Computer Science 32–41 (IEEE, 2004).

  • Richter, P. C. Quantum speedup of classical mixing processes. Phys. Rev. A 76, 042306 (2007).

    Article 

    Google Scholar
     

  • Somma, R. D., Boixo, S., Barnum, H. & Knill, E. Quantum simulations of classical annealing processes. Phys. Rev. Lett. 101, 130504 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wocjan, P. & Abeyesinghe, A. Speedup via quantum sampling. Phys. Rev. A 78, 042336 (2008).

    Article 

    Google Scholar
     

  • Harrow, A. W. & Wei, A. Y. in Proceedings of the Fourteenth Annual ACM-SIAM Symposium on Discrete Algorithms 193–212 (SIAM, 2020).

  • Lemieux, J., Heim, B., Poulin, D., Svore, K. & Troyer, M. Efficient quantum walk circuits for Metropolis-Hastings algorithm. Quantum 4, 287 (2020).

    Article 

    Google Scholar
     

  • Arunachalam, S., Havlicek, V., Nannicini, G., Temme, K. & Wocjan, P. in 2021 IEEE International Conference on Quantum Computing and Engineering (QCE) 112–122 (IEEE, 2021).

  • Dumoulin, V., Goodfellow, I. J., Courville, A. & Bengio, Y. in Proceedings of the Twenty-Eighth AAAI Conference on Artificial Intelligence 1199–1205 (AAAI Press, 2014).

  • Benedetti, M., Realpe-Gómez, J., Biswas, R. & Perdomo-Ortiz, A. Estimation of effective temperatures in quantum annealers for sampling applications: a case study with possible applications in deep learning. Phys. Rev. A 94, 022308 (2016).

    Article 

    Google Scholar
     

  • Nelson, J., Vuffray, M., Lokhov, A. Y., Albash, T. & Coffrin, C. High-quality thermal Gibbs sampling with quantum annealing hardware. Phys. Rev. Appl. 17, 044046 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Wild, D. S., Sels, D., Pichler, H., Zanoci, C. & Lukin, M. D. Quantum sampling algorithms for near-term devices. Phys. Rev. Lett. 127, 100504 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wild, D. S., Sels, D., Pichler, H., Zanoci, C. & Lukin, M. D. Quantum sampling algorithms, phase transitions, and computational complexity. Phys. Rev. A 104, 032602 (2021).

    Article 
    MathSciNet 
    CAS 

    Google Scholar
     

  • Cerezo, M. et al. Variational quantum algorithms. Nat. Rev. Phys. 3, 625–644 (2021).

    Article 

    Google Scholar
     

  • Bharti, K. et al. Noisy intermediate-scale quantum algorithms. Rev. Mod. Phys. 94, 015004 (2022).

    Article 
    MathSciNet 
    CAS 

    Google Scholar
     

  • Babbush, R. et al. Focus beyond quadratic speedups for error-corrected quantum advantage. PRX Quantum 2, 010103 (2021).

    Article 

    Google Scholar
     

  • Swendsen, R. H. & Wang, J.-S. Replica Monte Carlo simulation of spin-glasses. Phys. Rev. Lett. 57, 2607–2609 (1986).

    Article 
    MathSciNet 
    CAS 
    PubMed 

    Google Scholar
     

  • Baldwin, C. L. & Laumann, C. R. Quantum algorithm for energy matching in hard optimization problems. Phys. Rev. B 97, 224201 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Smelyanskiy, V. N. et al. Nonergodic delocalized states for efficient population transfer within a narrow band of the energy landscape. Phys. Rev. X 10, 011017 (2020).

    CAS 

    Google Scholar
     

  • Smelyanskiy, V. N., Kechedzhi, K., Boixo, S., Neven, H. & Altshuler, B. Intermittency of dynamical phases in a quantum spin glass. Preprint at https://arxiv.org/abs/1907.01609 (2019).

  • Brooks, S., Gelman, A., Jones, G. & Meng, X.-L. Handbook of Markov Chain Monte Carlo (CRC Press, 2011).

  • Andrieu, C. & Thoms, J. A tutorial on adaptive MCMC. Stat. Comput. 18, 343–373 (2008).

    Article 
    MathSciNet 

    Google Scholar
     

  • Mazzola, G. Sampling, rates, and reaction currents through reverse stochastic quantization on quantum computers. Phys. Rev. A 104, 022431 (2021).

    Article 
    MathSciNet 
    CAS 

    Google Scholar
     

  • Sherrington, D. & Kirkpatrick, S. Solvable model of a spin-glass. Phys. Rev. Lett. 35, 1792–1796 (1975).

    Article 

    Google Scholar
     

  • Suzuki, M. Decomposition formulas of exponential operators and Lie exponentials with some applications to quantum mechanics and statistical physics. J. Math. Phys. 26, 601–612 (1985).

    Article 
    MathSciNet 
    CAS 
    MATH 

    Google Scholar
     

  • Wallman, J. J. & Emerson, J. Noise tailoring for scalable quantum computation via randomized compiling. Phys. Rev. A 94, 052325 (2016).

    Article 

    Google Scholar
     

  • Earnest, N., Tornow, C. & Egger, D. J. Pulse-efficient circuit transpilation for quantum applications on cross-resonance-based hardware. Phys. Rev. Res. 3, 043088 (2021).

    Article 
    CAS 

    Google Scholar
     



  • Source link

    Leave a comment

    Leave a Reply

    Your email address will not be published. Required fields are marked *

    Related Articles

    Nature

    How the ‘groundbreaking’ Henrietta Lacks settlement could change research

    Members of Henrietta Lacks’s family walk with attorney Ben Crump (centre) ahead...

    Nature

    Threatened Mexican oasis loses its main researcher and protector — will it survive?

    On a warm day in March, ecologist Valeria Souza went into a...

    Nature

    ‘Virgin birth’ genetically engineered into female animals for the first time

    A giant chromosome from the fruit fly Drosophila melanogaster, which has been...

    Nature

    how AI research can break it open

    The sculpture of Alan Turning at Bletchley Park, UK. It is 73...