NATURE

Shell buckling for programmable metafluids

Afeera.com

[ad_1]

  • Engheta, N. & Ziolkowski, R. W. Metamaterials: Physics and Engineering Explorations (Wiley, 2006).

  • Craster, R. V. & Guenneau, S. Acoustic Metamaterials: Negative Refraction, Imaging, Lensing and Cloaking Vol. 166 (Springer Science & Business Media, 2012).

  • Deymier, P. A. Acoustic Metamaterials and Phononic Crystals Vol. 173 (Springer Science & Business Media, 2013).

  • Maldovan, M. Narrow low-frequency spectrum and heat management by thermocrystals. Phys. Rev. Lett. 110, 025902 (2013).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Bertoldi, K., Vitelli, V., Christensen, J. & Van Hecke, M. L. Flexible mechanical metamaterials. Nat. Rev. Mater. 2, 17066 (2017).

  • Kadic, M., Bückmann, T., Schittny, R. & Wegener, M. Metamaterials beyond electromagnetism. Rep. Prog. Phys. 76, 126501 (2013). ISSN 0034-4885.

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Christensen, J., Kadic, M., Kraft, O. & Wegener, M. Vibrant times for mechanical metamaterials (book review). MRS Commun. 5, 453–462 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Lee, G. et al. Piezoelectric energy harvesting using mechanical metamaterials and phononic crystals. Commun. Phys. 5, 94 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Xu, X. et al. Multifunctional metamaterials for energy harvesting and vibration control. Adv. Funct. Mater. 32, 2107896 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Hu, G., Tang, L., Liang, J., Lan, C. & Das, R. Acoustic-elastic metamaterials and phononic crystals for energy harvesting: a review. Smart Mater. Struct. 30, 085025 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Chen, Z., Guo, B., Yang, Y. & Cheng, C. Metamaterials-based enhanced energy harvesting: a review. Physica B 438, 1–8 (2014).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Fowler, C., Silva, S., Thapa, G. & Zhou, J. High efficiency ambient RF energy harvesting by a metamaterial perfect absorber. Opt. Mater. Express 12, 1242–1250 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Ramahi, O. M., Almoneef, T. S., AlShareef, M. & Boybay, M. S. Metamaterial particles for electromagnetic energy harvesting. Appl. Phys. Lett. 101, 173903 (2012).

    Article 
    ADS 

    Google Scholar
     

  • Lin, Keng-Te., Lin, H., Yang, T. & Jia, B. Structured graphene metamaterial selective absorbers for high efficiency and omnidirectional solar thermal energy conversion. Nat. Commun. 11, 1389 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cortés, E. et al. Optical metasurfaces for energy conversion. Chem. Rev. 122, 15082–15176 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Patel, S. K., Surve, J., Katkar, V. & Parmar, J. Optimization of metamaterial-based solar energy absorber for enhancing solar thermal energy conversion using artificial intelligence. Adva. Theory Simul. 5, 2200139 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Chen, T., Li, S. & Sun, H. Metamaterials application in sensing. Sensors 12, 2742–2765 (2012).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Molerón, M. & Daraio, C. Acoustic metamaterial for subwavelength edge detection. Nat. Commun. 6, 8037 (2015).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Fan, W., Yan, B., Wang, Z. & Wu, L. Three-dimensional all-dielectric metamaterial solid immersion lens for subwavelength imaging at visible frequencies. Sci. Adv. 2, e1600901 (2016).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Urzhumov, Y. A. et al. Plasmonic nanoclusters: a path towards negative-index metafluids. Opt. Express 15, 14129–14145 (2007).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Sheikholeslami, S. N., Alaeian, H., Koh, Ai. Leen. & Dionne, J. A. A metafluid exhibiting strong optical magnetism. Nano Lett. 13, 4137–4141 (2013).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Yang, J. et al. Broadband absorbing exciton-plasmon metafluids with narrow transparency windows. Nano Lett. 16, 1472–1477 (2016).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Hinamoto, T., Hotta, S., Sugimoto, H. & Fujii, M. Colloidal solutions of silicon nanospheres toward all-dielectric optical metafluids. Nano Lett. 20, 7737–7743 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Kim, K., Yoo, SeokJae, Huh, Ji-Hyeok, Park, Q.-Han & Lee, S. Limitations and opportunities for optical metafluids to achieve an unnatural refractive index. ACS Photon. 4, 2298–2311 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Cho, Y. et al. Using highly uniform and smooth selenium colloids as low-loss magnetodielectric building blocks of optical metafluids. Opt. Express 25, 13822–13833 (2017).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Brunet, T. et al. Soft 3D acoustic metamaterial with negative index. Nat. Mater. 14, 384–388 (2015).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Peretz, O., Ben Abu, E., Zigelman, A., Givli, S. & Gat, A. D. A metafluid with multistable density and internal energy states. Nat. Commun. 13, 1810 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Djellouli, A., Marmottant, P., Djeridi, H., Quilliet, C. & Coupier, G. Buckling instability causes inertial thrust for spherical swimmers at all scales. Phys. Rev. Lett. 119, 224501 (2017).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Jambon-Puillet, E., Jones, T. J. & Brun, P.-T. Deformation and bursting of elastic capsules impacting a rigid wall. Nat. Phys. 16, 585–589 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Utada, A. S. Monodisperse double emulsions generated from a microcapillary device. Science 308, 537–541 (2005).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen, Q. Robust fabrication of ultra-soft tunable PDMS microcapsules as a biomimetic model for red blood cells. Soft Matter 19, 5249–5261 (2023).

  • Puglisi, G. & Truskinovsky, L. Mechanics of a discrete chain with bi-stable elements. J. Mech. Phys. Solids 48, 1–27 (2000).

    Article 
    ADS 
    MathSciNet 

    Google Scholar
     

  • Benichou, I. & Givli, S. Structures undergoing discrete phase transformation. J. Mech. Phys. Solids 61, 94–113 (2013).

    Article 
    ADS 
    MathSciNet 

    Google Scholar
     

  • Nagelberg, S. et al. Reconfigurable and responsive droplet-based compound micro-lenses. Nat. Commun. 8, 14673 (2017).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Guazzelli, É., Morris, J. F. & Pic, S. A Physical Introduction to Suspension Dynamics Cambridge Texts in Applied Mathematics (Cambridge Univ. Press, 2011).

  • Shewan, H. M. & Stokes, J. R. Viscosity of soft spherical micro-hydrogel suspensions. J. Colloid Interface Sci. 442, 75–81 (2015).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Shewan, H. M. & Stokes, J. R. Analytically predicting the viscosity of hard sphere suspensions from the particle size distribution. J. Nonnewton. Fluid Mech. 222, 72–81 (2015).

    Article 
    MathSciNet 
    CAS 

    Google Scholar
     

  • Dressaire, E. & Sauret, A. Clogging of microfluidic systems. Soft Matter 13, 37–48 (2017).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Chien, S., Usami, S. & Bertles, J. F. Abnormal rheology of oxygenated blood in sickle cell anemia. J. Clin. Invest. 49, 623–634 (1970).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     


  • [ad_2]

    Source link

    Afeera.com
    Afeera.com
    the authorAfeera.com